Gas Discharge Visualisation
Gas discharge visualization (GDV) is based on electrical activity of human organism. In disease condition, the electrical activity of human body is changed as compared to electrical activity in healthy state. The electron communication is altered, and therefore, the natural electrophotonic emission of the organism is changed.
The GDV technique is a method that combines eastern medicine with western approach. Capturing the natural electrophotonic emission of human body, referred to as GDV-grams, allows one to identify the functional state of an individual in real time.
The biometric method based on GDV is extracting the stimulated electrons and photons from the surface of the skin under the influence of pulsed electromagnetic field. This process is quite well studied with physical electronic methods and is known as “photoelectron emission”. The particles emitted and accelerated in the electromagnetic field emerge as electronic avalanches on the surface of the glass electrode causing the so-called “sliding gas discharge”. The discharge causes glow due to the excitement of molecules in the surrounding hydrogen, and this glow is what is being measured by the biometric method based on GDV. Therefore, short voltage pulses stimulate the electrophotonic emission concomitantly intensifying this emission in the gas discharge due to the electric field created.
The data obtained in the process of measuring of extremely weak “biophoton field” is the scientific information which may reveal the role of some electro-photon processes underlying the functional state of the body.
In the biometric GDV method, the stimulation of electrons and photons is intensified thousand times and thus enables measurements under normal circumstances, with normal lighting, without special preparation of the objects. The design of the biometric GDV device is completely safe as the electric current that flows through is a pulse current in microamps which is not causing any depolarization of tissue or other physiological changes. Other methods using voltage pulses which last more than a few milliseconds avoid the depolarization by applying different pastes or gels.
The process of extraction of electrons and photons in GDV method consists of two phases of capturing the images: without filter and with filter. In the initial stage, the electrons located in the outer layers of the cutaneous covering and the surrounding tissue are extracted. In the second phase, electrons from the deepest tissues in the body are included in the current flow. These electrons may have several sources. A wide range of instruments make it possible to use the technique in various field of human activities – medicine professional sports, fitness, spa and various areas of psychology and psycho-physiology, and also in basic and applied research. It makes it possible to study the environment and to evaluate this state of human body.